Chapter 3 Packet Switching

Circuit Switching \& Packet Switching

- There are two limitations on the directly connected networks:
- How many hosts can be attached?
- How large of a geographic area a network can serve?
- To build networks that can be global in scale
- To enable communication between hosts that are not directly connected
- Circuit switching: used for telephony
- Packet switching: used for computer networks
- A packet switch is a device with several inputs and outputs leading to and from the hosts that the switch interconnects
- Takes packets that arrive on an input
- Forwards them to the right outputs

Packet Switching

- A key problem for a switch is
- The bandwidth of its outputs is finite
- Contention: the arrival rate exceeds the capacity of the output
- The switch queues packets until the contention subsides
- If the contention lasts too long
- The switch will run out of buffer space and be forced to discard packets
- If packets are discarded too frequently
- The switch is said to be congested

Arrival Traffic

Output Traffic

Switching and Forwarding

Switching and Forwarding

- A switch is a multi-input, multi-output device
- Transfers packets from an input to one or more outputs
- Star topology

Switching and Forwarding

- A switch is connected to a set of links and, for each links, runs the appropriate data link protocol
- Switching and Forwarding is
- To receive incoming packets on one link and to transmit them on some other link
- From an input port to an output port
- Output determination is called Routing (Network layer)

Switching and Forwarding

- Switching: looks at the header of a packet for an identifier
- Three approaches for switching:
- Datagram or connectionless approach
- Virtual circuit (VC) or connection-oriented approach
- Source routing (less common)
- Address:
- Nodes are identified by MAC addresses on a network
- No two nodes on a network have the same address
- All Ethernet cards are assigned a globally unique identifier

Datagram Approach

- Every packet contains the complete destination address
- A switch consults a forwarding table (routing table) for port determination

Forwarding table for Switch 2

Destination	Port
A	3
B	0
C	3
D	3
E	2
F	$\mathbf{1}$
G	$\mathbf{0}$
H	$\mathbf{0}$

Datagram Approach

- The table should be configured statically: it is hard for large networks with dynamically changing topologies
- Characteristics of connectionless (datagram) networks are
- A host can send a packet anywhere at any time
- When a host sends a packet, it has no way of knowing
- If the network is capable of delivering it or
- If the destination host is up and running
- Each packet is forward independently
- Two successive packets may follow different paths
- A switch or link failure might not have any serious effect on communication
- To find an alternate route and update the table

Virtual Circuit Approach

- A widely used technique for packet switching
- Require to set up a virtual connection from the source host to the destination host before any data is sent
- A two-stage process:
- The first stage: connection setup
- The second stage: data transfer

Host A
Source

Virtual Circuit (Connection Setup Phase)

- The connection setup phase:
- To establish "connection state" in each of the switches between the source and destination hosts
- A single connection consists of an entry in a "VC table" in each switch. Each entry contains:
- A virtual circuit identifier (VCI): uniquely identifies the connection at this switch
- An incoming interface on which packets for this VC arrive at the switch
- An outgoing interface in which packets for this VC leave the switch

Virtual Circuit (Connection Setup Phase)

- There are two ways to establish connection state:
- Permanent virtual circuit (PVC): a network administrator configures or deletes the state
- Switched (signaled) virtual circuit (SVC): a host can send messages into the network to establish the state (without the involvement of a network administrator)
- If a packet arrives on the designated incoming interface and that packet contains the designated VCI value in its header
- The packet is sent out the specified outgoing interface
- Inserts the specified outgoing VCI value in the packet header
- The VCI is not a globally significant identifier for the connection; it has significant only on a given link

Virtual Circuit Approach (PVC)

- PVC: The administrator picks a VCI value that is currently unused on each link for the connection
- For example: Host A \leftrightarrow Switch 1: VCI value 5 Switch $1 \leftrightarrow$ Switch 2: VCI value 11

Virtual Circuit Approach (PVC)

- For example: Switch $2 \leftrightarrow$ Switch 3: VCI value 7

Switch 2 \begin{tabular}{|c|c|c|c|}

\hline | Incoming |
| :---: |
| Interface | \& Incoming VCI \& | Outgoing |
| :---: |
| Interface | \& Outgoing VCI

\hline $\mathbf{3}$ \& $\mathbf{1 1}$ \& $\mathbf{2}$ \& $\mathbf{7}$

\hline
\end{tabular}

Virtual Circuit Approach (PVC)

- For example: Switch $3 \leftrightarrow$ Host B: VCI value 4

Switch 3 \begin{tabular}{c|c|c|c|c|}

\cline { 2 - 4 } \& | Incoming |
| :---: |
| Interface | \& Incoming VCI \& | Outgoing |
| :---: |
| Interface | \& Outgoing VCI

\cline { 2 - 5 } \& $\mathbf{0}$ \& $\mathbf{7}$ \& $\mathbf{1}$ \& $\mathbf{4}$

\cline { 2 - 5 } \& \&
\end{tabular}

Virtual Circuit Approach (SVC)

- In the case of PVCs, signaling is initiated by the network administrator
- In the case of SVCs, signaling is initiated by one of the hosts
- Host A sends a setup message into the network (to SW1)
- Contains the complete destination address of host B
- Each SW has to know which output will lead to host B
- Sends the setup message to the right output
- When SW1 receives the connection request
- It sends the setup message to SW2
- It creates a new entry in its virtual circuit table
- The task of assigning an unused VCI value, e.g. VCI = 5, is performed by the SW

Virtual Circuit Approach (SVC)

Which leads to Host B? \Rightarrow Port1 SW1 creates a new entry

Virtual Circuit Approach (SVC)

- When SW2 receives the setup message, it performs a similar process, e.g. VCI = 11
- When SW3 receives the setup message, it performs a similar process, e.g. VCI = 7
- Finally, the setup message arrives at host B, and assuming that B is healthy and willing to accept a connection from A
- It allocates an incoming VCI value, e.g. VCI $=4$, used to identify all packets coming from host A

Virtual Circuit Approach (SVC)

Which leads to Host B? \Rightarrow Port2
SW2 creates a new entry

Host A
Which leads to Host B? \Rightarrow Port 1 SW3 creates a new entry

Virtual Circuit Approach (SVC)

- Host B sends an acknowledgment of the connection setup to SW3, including the VCI that it chose (i.e. 4)
- SW3 completes the virtual circuit table entry for this connection, and sends the acknowledgment on to SW2
- Finally, the acknowledgment is passed on to host A

Sends an ACK to SW3

Virtual Circuit Approach

- The outgoing VCI value at one switch is the incoming VCI value at the next switch

Switch 1	Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
	2	5	1	11
Switch 2	Incoming Interface	Incoming VCI	Outgoing Interface	Outgoing VCI
	3	11	2	7
Switch 3	Incoming Interface	Incoming VCI	Outgeing Interface	Outgoing VCI
	0		1	4

Virtual Circuit Approach

- For a packet that it wants to send to host B
- Host A puts the VCI value 5 in the header and sends to SW1
- SW1 uses the combination of the interface and the VCI in the packet header to find the appropriate VC table entry
- SW1 forwards the packet out of interface 1 and to put the VCI value 11 in the packet header
- This process continues until it arrives at host B

Virtual Circuit Approach

- When host A no longer wants to send data to host B
- It tears down the connection by sending a teardown message to SW1
- The SW removes the relevant entry from its table and forwards the message to the other SW in the path
- If host A send a packet with a VCI of 5 to SW1
- Since the connection does not exist
- The packet will be dropped

Virtual Circuit Approach

- Things about Virtual Circuit Switching:
- There is at least one RTT (round-trip time) of delay before data is sent
- The transmitter has to wait for the VC being set up
- The per-packet overhead caused by the header is reduced relative to the datagram method
- The connection request contains a global identifier
- Each data packet contains only a small identifier
- If a switch or a link in a connection fails, the connection is broken and needs to be torn down
- A routing algorithm is required for the connection request

Virtual Circuit Approach

- For VCS, the transmitter knows quite a lot about the network
- There is a route to the receiver
- The receiver is willing and able to receive data
- Resources have been allocated to the VC at the time it is established
- For example, X. 25 network employs the three-part strategy:
- Buffers are allocated to each VC when it is initialized
- The sliding window protocol is run between each pair of nodes along the VC
- If not enough buffers are available \Rightarrow the circuit is rejected

Source Routing

- All the information, about network topology that is required to switch a packet, is provided by the source host
- The output port of each SW is placed in the header of the packet
- For each packet that arrives on an input, the SW reads the port number in the header and transmits the packet on that output
- The source will put an ordered list of SW ports in the packet header
- Each SW will rotate the list for each transmission
- The next SW in the path is always at the front of the list

Source Routing

- Output port list: [1, 0, 3]

Source Routing

- Things about Source Routing:
- It assumes that the sending host knows enough information of the right directions in each SW
- Analogous to the problem of building the forwarding tables in a datagram network
- The size of the packet header cannot be predicted
- The headers are probably of variable length with no upper bound (depending on the number of SWs)
- There are some variations on this approach
- Rather than rotate the header, each SW could just strip the first element used in this SW
- Another alternative is to have a pointer to the current "next port" entry

Source Routing

- Rotation has an advantage over stripping:
- Host B gets a copy of the complete header \rightarrow the way back to host A

Header entering

Header leaving switch

Rotation Stripping

Pointer

Bridges and LAN Switches

Bridge

- Bridge: a node put between two Ethernets to interconnect these two networks
- Extended LAN: a collection of LANs connected by one or more bridges
- Bridges simply accept LAN frames on their inputs and forward them out on all other outputs

Learning Bridges

- The bridge need not forward all frames that it receives
- For example: the frames from host A to host B
- A bridge should learn on which port the various hosts reside?
- One option: Manually download a table into the bridge
- The datagram model should be applied (global identifier is required for all frames)

Host A Host Z
Host A Host B

Learning Bridges

- Another option: a bridge learn this information automatically
- Bridges inspect the source address in all received frames
- When host A sends a frame to a host on either side
- The bridge receives this frame on port 1 and records the fact that host A resides on the side of port 1
- Then the bridge can build a table
- A timeout is associated with each entry
- In order to protect against the situation that a host is moved from one network to another
- The bridge discards the entry after timeout occurs

Host	A	B	C	X	Y	Z
Port	1	1	1	2	2	2

Spanning Tree Algorithm

- The network may be managed by more than one administrator
- No single person knows the entire configuration of the network \rightarrow a loop might be added without anyone knowing
- Loops may be built into the network on purpose (redundancy)

Spanning Tree Algorithm

- If the extended LAN has a loop in it
- Frames potentially loop through the extended LAN forever

Destination Source

Spanning Tree Algorithm

- Bridges must be able to correctly handle loops
- The bridges must run a distributed spanning tree algorithm
- A protocol used by a set of bridges to agree upon a particular extended LAN
- A spanning tree is a subgraph of the originally graph that covers (spans) all the vertices, but contains no cycles

Cyclic graph

Spanning tree

Spanning Tree Algorithm

- In practice, this means that each bridge decides the ports over which it is and is not willing to forward frames
- The algorithm is dynamic: should some bridges fail, the bridges reconfigure themselves into a new spanning tree

Spanning Tree Algorithm

- The main purpose: for bridges to select the ports over which they will forward frames
- Each bridge has a unique identifier
- First elects the bridge with the smallest ID as the root of the spanning tree
- The root bridge always forwards frames out over all ports
- Each bridge computes the shortest path to the root and notes which of its ports is on this path
- Each LAN select a single designated bridge that will be responsible for forwarding frames toward the root bridge
- The one that is closest to the root
- If ties occur, the one with smallest ID is selected

Spanning Tree Algorithm

- B1 is the root bridge
- For all bridges, find the shortest path to the root

Spanning Tree Algorithm

- For LAN A:
- Two bridges are available: B3 and B5
- The designated bridge is B5

Spanning Tree Algorithm

- For LAN B:
- Two bridges are available: B5 and B7
- The distances are Tie
- The designated bridge is B5

Spanning Tree Algorithm

- For LAN I:
- Two bridges are available: B4 and B6
- The distances are Tie
- The designated bridge is $\mathbf{B 4}$

Spanning Tree Algorithm

- The bridges have to exchange configuration messages
- To decide whether or not they are the root or a designated bridge
- The information contained in the configuration messages is
- The ID for the bridge that is sending the message
- The ID for what the sending bridge believes to be the root bridge
- The distance, measured in hops, from the sending bridge to the root bridge
- Each bridge records the current "best" configuration message it has seen on each of its ports

Spanning Tree Algorithm

- Initially, each bridge thinks it is the root, and sends a configuration message identifying itself as the root
- Upon receiving a configuration message over a particular port
- The bridge checks that if the new message is better than the current recorded best configuration message
- The new configuration message is considered "better" if
- It identifies a root with a smaller ID, or
- It identifies a root with an equal ID but with a shorter distance, or
- The root ID and distance are equal, but the sending bridge has a smaller ID

Spanning Tree Algorithm

- If the new message is better
- The bridge discards the old information and saves the new information
- The bridge adds 1 to the distance-to-root field
- When a bridge receives a configuration message indicating that it is not the root bridge (i.e. a message with a smaller ID)
- Stops to generate the configuration message on its own
- Forwards configuration messages from other bridges
- When the system stabilizes, only the root bridge is still generating configuration messages

Broadcast and Multicast

- Broadcast:
- Each bridge forwards a frame with a destination broadcast address out on each active port other than the one on which the frame was received
- Multicast:

- Implemented in exactly the same way
- Each host decides whether or not to accept the message

Limitations of Bridges (Scale)

- Scale Limitation: it is not realistic to connect more than a few (tens of) LANs by means of bridges
- The spanning tree algorithm scales linearly (bad efficiency)
- Bridges forward all broadcast frames (heavy traffic load)
- Reality:
- The broadcast message should be seen only for all hosts within a limited setting (e.g. a department or a company)
- All the hosts in a larger environment (e.g. a university) will not want to be bothered by each other's broadcast messages
- Broadcast does not scale \Rightarrow extended LANs do not scale

Virtual LANs

- VLANs allow a single extended LAN to be partitioned into several seemingly (not practically) separate LANs
- Each virtual LAN is assigned an identifier
- Packets can only travel from one segment to another if both segments have the same identifier
- This limits the number of segments that will receive any given broadcast packet
- It can change the logical topology without moving wires or changing addresses

Limitations of Bridges (Heterogeneity)

- Heterogeneity Limitation: Bridges are fairly limited in the kinds of networks they can interconnect
- Bridges make use of the network’s frame header
- Bridges can support only networks that have exactly the same address format
- Bridges connect Ethernets to Ethernets, 802.5 to 802.5, and Ethernets to 802.5 rings $\Rightarrow 48$-bit address format
- Bridges do not generalize to other kinds of networks, such as ATM

Limitations of Bridges

- Advantage of bridges: allow multiple LANs to be transparently connected
- Networks can be connected without the end hosts having to run any additional protocols
- Disadvantage of bridges: this transparency can be dangerous
- The application and transport protocol running on a host may be programmed under the assumption of running on a single LAN
- If a bridge becomes congested, it may have to drop frames
- It is rare that a single Ethernet drops a frame
- The latency between any pair of hosts on an extended LAN becomes both larger and more highly variable

Cell Switching (ATM)

ATM

- ATM: Asynchronous Transfer Mode
- ATM is a connection-oriented, packet-switched technology
- It uses virtual circuits
- The QoS capabilities of ATM are one of its greatest strengths
- The ATM packets are of fixed length
- 53 bytes - 5 bytes of header followed by 48 bytes of payload
- These fixed-length packets are named "cells" \Rightarrow cell switching

Variable Packet Length

- All the packet-switching technologies have used variablelength packets
- The variable-length is constrained within some bounds
- If a host only has 1 byte to send
- Puts the data in a minimum-sized packet
- Minimizes the extra padding
- If a host has a large file to send
- Breaks it up into maximum-sized packets
- Drives down the ratio of header to data bytes \Rightarrow increases bandwidth efficiency
- Minimizes the total number of packets sent
- Cells, in contrast, are both fixed in length and small in size

Why fixed-length cells?

- High speed switching
- Easy and simple
- Parallelization
- Cut-through effect (smaller queueing time for store-and-forward networks)

Variable Packet Length

- If a host only has 1 byte to send
minimum-sized packet

Payload
Header 1 byte Padding \longleftarrow If necessary

- If a host only has a large file to send

Efficiency: $L_{P} /\left(L_{H}+L_{P}\right)$

Cells Size

- The reasons of using fixed-length packets are
- Easy implementation of hardware switches
- When the length of each packet is fixed and known, the job of processing packets is simpler
- Enable parallelism, improves the scalability of switch designs
- Cell switching eases the task of building hardware
- If all packets are the same length, we can have lots of switching elements all doing the same thing in parallel

Cells Size

- The delay variation is important for some applications
- If the link speed is 100 Mbps and the packet-length is 4 KB
- Transmission time: $4096 \times 8 / 100=327.68 \mu \mathrm{~s}$
- A high-priority packet may need to wait for $327.68 \mu \mathrm{~s}$
- If the packet-length is 53 byte
- Transmission time: $53 \times 8 / 100=4.24 \mu$ s (much smaller)
- If the packet-length is too short
- The amount of header information is fixed
- The bandwidth efficiency goes down
- If the packet-length is too big
- Need to pad transmitted data to fill a complete cell
- Data: 1 byte; Payload size: 48 bytes \Rightarrow Padding: 47 bytes

Cells Size

- Voice services use 64 kbps PCM (Pulse-Code Modulation)
- 8-bit samples taken at 8 KHz sampling rate
- 8-bit: 256 levels are used
- 8 KHz : voice signal bandwidth is 4 Khz
- 1 byte is sampled for every $125 \mu \mathrm{~s}$
- If a cells are $\mathbf{1 0 0 0}$ bytes long, it take 125 ms to collect a full cell before the start of transmission
- Long latency is noticeable to a human listener
- Long latency \Rightarrow Echo \Rightarrow can be eliminated by an echo canceller
Latency \geq transmit time + propagation delay
- Use a large cell size or a small cell size?

Cells Size

- US telephone companies were pushing for a 64-byte cell size
- US is a large enough country (large propagation distance \Rightarrow Long latency), the echo cancellers are needed anyway
- Larger cell size will improve the header-to-payload ratio
- Europeans were advocating 32-byte cells
- Their countries are a small enough size
- No echo cancellers are needed if the latency is small enough, i.e. the cell size is small enough
- Compromise: Averaging the cell size
$-(64+32) / 2=48$ bytes

Cell Format

4	8	16	3	1	8	384 (48 bytes)
GFC	VPI	VCI	Type	CLP	HEC (CRC-8)	Payload

- Two types of cell format: UNI cell format
- UNI (user-network interface) format: customer-operator
- NNI (network-network interface) format: pair of operators
- NNI format replace the GFC field with 4 extra bits of VPI
- GFC (generic flow control): have local significance at a site
- 8-bit VPI (virtual path identifier) and 16-bit VCI (virtual circuit identifier): 24-bit used to identify a virtual connection
- Type: When the first bit is set (" 1 ") or clear (" 0 "), the cell relates to management functions or user data, respectively.
- CLP (cell loss priority): set this bit to indicate cells that \leftarrow QoS should be dropped preferentially in the event of overload

Segmentation and Reassembly (SAR)

- Segmentation (Fragmentation): fragments the high-level message into low-level packets at the source
- Reassembly: reassembles the fragments back together at the destination
- A protocol layer (ATM Adaptation Layer, AAL) was added between ATM and the variable-length packet protocols that might use ATM, such as IP
 cells

AAL 3/4

- Convergence Sublayer Protocol Data Unit (CS-PDU)

8	8	16	<64 KB	$0-24$	8	8	16
CPI	Btag	BASize	User data				

- CPI: commerce part indicator (version field)
- Btag/Etag:beginning and ending tag
- BAsize: hint on amount of buffer space to allocate
- Length: size of whole PDU

Cell Format

40	2	4	10	352 (44 bytes)	6	10
ATM header	Type	SEQ	MID	Payload	Length	CRC-10

- Type
- BOM: beginning of message
- COM: continuation of message
- EOM end of message
- SEQ: sequence of number
- MID: message id
- Length: number of bytes of PDU in this cell

AAL5

- CS-PDU Format

$<64 \mathrm{~KB}$	$0-47$ bytes			16	16
Data					

- pad so trailer always falls at end of ATM cell
- Length: size of PDU (data only)
- CRC-32 (detects missing or misordered cells)
- Cell Format
- end-of-PDU bit in Type field of ATM header

Virtual Paths

- The switch in the public network would use the VPI to make forwarding decisions
- A virtual circuit network with 8-bit circuit identifiers
- The $\mathbf{1 6}$-bit VCI is of no interest to these public switches
- Not used for switching in the public network
- The virtual path acts like a fat pipe that contains a bundle of virtual circuits

Physical Layers for ATM

- ATM can run over several different physical media and physical-layer protocols
- ATM-over SONET
- Wireless ATM

ATM in LAN

- ATM is a switching technology, whereas Ethernet and 802.5 are shared-media technologies

